1.C语言版 视频教程点我查看
1.1 任务队列 1 2 3 4 5 6 typedef struct Task { void (*function)(void * arg); void * arg; }Task;
1.2 线程池定义 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 struct ThreadPool { Task* taskQ; int queueCapacity; int queueSize; int queueFront; int queueRear; pthread_t managerID; pthread_t *threadIDs; int minNum; int maxNum; int busyNum; int liveNum; int exitNum; pthread_mutex_t mutexPool; pthread_mutex_t mutexBusy; pthread_cond_t notFull; pthread_cond_t notEmpty; int shutdown; };
1.3 头文件声明 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 #ifndef _THREADPOOL_H #define _THREADPOOL_H typedef struct ThreadPool ThreadPool ;ThreadPool *threadPoolCreate (int min, int max, int queueSize) ; int threadPoolDestroy (ThreadPool* pool) ;void threadPoolAdd (ThreadPool* pool, void (*func)(void *), void * arg) ;int threadPoolBusyNum (ThreadPool* pool) ;int threadPoolAliveNum (ThreadPool* pool) ;void * worker (void * arg) ;void * manager (void * arg) ;void threadExit (ThreadPool* pool) ;#endif
1.4 源文件定义 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 ThreadPool* threadPoolCreate (int min, int max, int queueSize) { ThreadPool* pool = (ThreadPool*)malloc (sizeof (ThreadPool)); do { if (pool == NULL ) { printf ("malloc threadpool fail...\n" ); break ; } pool->threadIDs = (pthread_t *)malloc (sizeof (pthread_t ) * max); if (pool->threadIDs == NULL ) { printf ("malloc threadIDs fail...\n" ); break ; } memset (pool->threadIDs, 0 , sizeof (pthread_t ) * max); pool->minNum = min; pool->maxNum = max; pool->busyNum = 0 ; pool->liveNum = min; pool->exitNum = 0 ; if (pthread_mutex_init(&pool->mutexPool, NULL ) != 0 || pthread_mutex_init(&pool->mutexBusy, NULL ) != 0 || pthread_cond_init(&pool->notEmpty, NULL ) != 0 || pthread_cond_init(&pool->notFull, NULL ) != 0 ) { printf ("mutex or condition init fail...\n" ); break ; } pool->taskQ = (Task*)malloc (sizeof (Task) * queueSize); pool->queueCapacity = queueSize; pool->queueSize = 0 ; pool->queueFront = 0 ; pool->queueRear = 0 ; pool->shutdown = 0 ; pthread_create(&pool->managerID, NULL , manager, pool); for (int i = 0 ; i < min; ++i) { pthread_create(&pool->threadIDs[i], NULL , worker, pool); } return pool; } while (0 ); if (pool && pool->threadIDs) free (pool->threadIDs); if (pool && pool->taskQ) free (pool->taskQ); if (pool) free (pool); return NULL ; } int threadPoolDestroy (ThreadPool* pool) { if (pool == NULL ) { return -1 ; } pool->shutdown = 1 ; pthread_join(pool->managerID, NULL ); for (int i = 0 ; i < pool->liveNum; ++i) { pthread_cond_signal(&pool->notEmpty); } if (pool->taskQ) { free (pool->taskQ); } if (pool->threadIDs) { free (pool->threadIDs); } pthread_mutex_destroy(&pool->mutexPool); pthread_mutex_destroy(&pool->mutexBusy); pthread_cond_destroy(&pool->notEmpty); pthread_cond_destroy(&pool->notFull); free (pool); pool = NULL ; return 0 ; } void threadPoolAdd (ThreadPool* pool, void (*func)(void *), void * arg) { pthread_mutex_lock(&pool->mutexPool); while (pool->queueSize == pool->queueCapacity && !pool->shutdown) { pthread_cond_wait(&pool->notFull, &pool->mutexPool); } if (pool->shutdown) { pthread_mutex_unlock(&pool->mutexPool); return ; } pool->taskQ[pool->queueRear].function = func; pool->taskQ[pool->queueRear].arg = arg; pool->queueRear = (pool->queueRear + 1 ) % pool->queueCapacity; pool->queueSize++; pthread_cond_signal(&pool->notEmpty); pthread_mutex_unlock(&pool->mutexPool); } int threadPoolBusyNum (ThreadPool* pool) { pthread_mutex_lock(&pool->mutexBusy); int busyNum = pool->busyNum; pthread_mutex_unlock(&pool->mutexBusy); return busyNum; } int threadPoolAliveNum (ThreadPool* pool) { pthread_mutex_lock(&pool->mutexPool); int aliveNum = pool->liveNum; pthread_mutex_unlock(&pool->mutexPool); return aliveNum; } void * worker (void * arg) { ThreadPool* pool = (ThreadPool*)arg; while (1 ) { pthread_mutex_lock(&pool->mutexPool); while (pool->queueSize == 0 && !pool->shutdown) { pthread_cond_wait(&pool->notEmpty, &pool->mutexPool); if (pool->exitNum > 0 ) { pool->exitNum--; if (pool->liveNum > pool->minNum) { pool->liveNum--; pthread_mutex_unlock(&pool->mutexPool); threadExit(pool); } } } if (pool->shutdown) { pthread_mutex_unlock(&pool->mutexPool); threadExit(pool); } Task task; task.function = pool->taskQ[pool->queueFront].function; task.arg = pool->taskQ[pool->queueFront].arg; pool->queueFront = (pool->queueFront + 1 ) % pool->queueCapacity; pool->queueSize--; pthread_cond_signal(&pool->notFull); pthread_mutex_unlock(&pool->mutexPool); printf ("thread %ld start working...\n" , pthread_self()); pthread_mutex_lock(&pool->mutexBusy); pool->busyNum++; pthread_mutex_unlock(&pool->mutexBusy); task.function(task.arg); free (task.arg); task.arg = NULL ; printf ("thread %ld end working...\n" , pthread_self()); pthread_mutex_lock(&pool->mutexBusy); pool->busyNum--; pthread_mutex_unlock(&pool->mutexBusy); } return NULL ; } void * manager (void * arg) { ThreadPool* pool = (ThreadPool*)arg; while (!pool->shutdown) { sleep(3 ); pthread_mutex_lock(&pool->mutexPool); int queueSize = pool->queueSize; int liveNum = pool->liveNum; pthread_mutex_unlock(&pool->mutexPool); pthread_mutex_lock(&pool->mutexBusy); int busyNum = pool->busyNum; pthread_mutex_unlock(&pool->mutexBusy); if (queueSize > liveNum && liveNum < pool->maxNum) { pthread_mutex_lock(&pool->mutexPool); int counter = 0 ; for (int i = 0 ; i < pool->maxNum && counter < NUMBER && pool->liveNum < pool->maxNum; ++i) { if (pool->threadIDs[i] == 0 ) { pthread_create(&pool->threadIDs[i], NULL , worker, pool); counter++; pool->liveNum++; } } pthread_mutex_unlock(&pool->mutexPool); } if (busyNum * 2 < liveNum && liveNum > pool->minNum) { pthread_mutex_lock(&pool->mutexPool); pool->exitNum = NUMBER; pthread_mutex_unlock(&pool->mutexPool); for (int i = 0 ; i < NUMBER; ++i) { pthread_cond_signal(&pool->notEmpty); } } } return NULL ; } void threadExit (ThreadPool* pool) { pthread_t tid = pthread_self(); for (int i = 0 ; i < pool->maxNum; ++i) { if (pool->threadIDs[i] == tid) { pool->threadIDs[i] = 0 ; printf ("threadExit() called, %ld exiting...\n" , tid); break ; } } pthread_exit(NULL ); }
1.5 测试代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 void taskFunc (void * arg) { int num = *(int *)arg; printf ("thread %ld is working, number = %d\n" , pthread_self(), num); sleep(1 ); } int main () { ThreadPool* pool = threadPoolCreate(3 , 10 , 100 ); for (int i = 0 ; i < 100 ; ++i) { int * num = (int *)malloc (sizeof (int )); *num = i + 100 ; threadPoolAdd(pool, taskFunc, num); } sleep(30 ); threadPoolDestroy(pool); return 0 ; }
2.C++版 视频教程点我查看
2.1 任务队列 2.1.1 类声明 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 using callback = void (*)(void *);struct Task { Task () { function = nullptr ; arg = nullptr ; } Task (callback f, void * arg) { function = f; this ->arg = arg; } callback function; void * arg; }; class TaskQueue { public : TaskQueue (); ~TaskQueue (); void addTask (Task& task) ; void addTask (callback func, void * arg) ; Task takeTask () ; inline int taskNumber () { return m_queue.size (); } private : pthread_mutex_t m_mutex; std::queue<Task> m_queue; };
其中 Task
是任务类,里边有两个成员,分别是两个指针 void(*)(void*)
和 void*
另外一个类 TaskQueue
是任务队列,提供了添加任务、取出任务、存储任务、获取任务个数、线程同步的功能。
2.1.2 类定义 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 TaskQueue::TaskQueue () { pthread_mutex_init (&m_mutex, NULL ); } TaskQueue::~TaskQueue () { pthread_mutex_destroy (&m_mutex); } void TaskQueue::addTask (Task& task) { pthread_mutex_lock (&m_mutex); m_queue.push (task); pthread_mutex_unlock (&m_mutex); } void TaskQueue::addTask (callback func, void * arg) { pthread_mutex_lock (&m_mutex); Task task; task.function = func; task.arg = arg; m_queue.push (task); pthread_mutex_unlock (&m_mutex); } Task TaskQueue::takeTask () { Task t; pthread_mutex_lock (&m_mutex); if (m_queue.size () > 0 ) { t = m_queue.front (); m_queue.pop (); } pthread_mutex_unlock (&m_mutex); return t; }
2.2 线程池 2.2.1 类声明 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 class ThreadPool { public : ThreadPool (int min, int max); ~ThreadPool (); void addTask (Task task) ; int getBusyNumber () ; int getAliveNumber () ; private : static void * worker (void * arg) ; static void * manager (void * arg) ; void threadExit () ; private : pthread_mutex_t m_lock; pthread_cond_t m_notEmpty; pthread_t * m_threadIDs; pthread_t m_managerID; TaskQueue* m_taskQ; int m_minNum; int m_maxNum; int m_busyNum; int m_aliveNum; int m_exitNum; bool m_shutdown = false ; };
2.2.2 类定义 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 ThreadPool::ThreadPool (int minNum, int maxNum) { m_taskQ = new TaskQueue; do { m_minNum = minNum; m_maxNum = maxNum; m_busyNum = 0 ; m_aliveNum = minNum; m_threadIDs = new pthread_t [maxNum]; if (m_threadIDs == nullptr ) { cout << "malloc thread_t[] 失败...." << endl;; break ; } memset (m_threadIDs, 0 , sizeof (pthread_t ) * maxNum); if (pthread_mutex_init (&m_lock, NULL ) != 0 || pthread_cond_init (&m_notEmpty, NULL ) != 0 ) { cout << "init mutex or condition fail..." << endl; break ; } for (int i = 0 ; i < minNum; ++i) { pthread_create (&m_threadIDs[i], NULL , worker, this ); cout << "创建子线程, ID: " << to_string (m_threadIDs[i]) << endl; } pthread_create (&m_managerID, NULL , manager, this ); } while (0 ); } ThreadPool::~ThreadPool () { m_shutdown = 1 ; pthread_join (m_managerID, NULL ); for (int i = 0 ; i < m_aliveNum; ++i) { pthread_cond_signal (&m_notEmpty); } if (m_taskQ) delete m_taskQ; if (m_threadIDs) delete []m_threadIDs; pthread_mutex_destroy (&m_lock); pthread_cond_destroy (&m_notEmpty); } void ThreadPool::addTask (Task task) { if (m_shutdown) { return ; } m_taskQ->addTask (task); pthread_cond_signal (&m_notEmpty); } int ThreadPool::getAliveNumber () { int threadNum = 0 ; pthread_mutex_lock (&m_lock); threadNum = m_aliveNum; pthread_mutex_unlock (&m_lock); return threadNum; } int ThreadPool::getBusyNumber () { int busyNum = 0 ; pthread_mutex_lock (&m_lock); busyNum = m_busyNum; pthread_mutex_unlock (&m_lock); return busyNum; } void * ThreadPool::worker (void * arg) { ThreadPool* pool = static_cast <ThreadPool*>(arg); while (true ) { pthread_mutex_lock (&pool->m_lock); while (pool->m_taskQ->taskNumber () == 0 && !pool->m_shutdown) { cout << "thread " << to_string (pthread_self ()) << " waiting..." << endl; pthread_cond_wait (&pool->m_notEmpty, &pool->m_lock); if (pool->m_exitNum > 0 ) { pool->m_exitNum--; if (pool->m_aliveNum > pool->m_minNum) { pool->m_aliveNum--; pthread_mutex_unlock (&pool->m_lock); pool->threadExit (); } } } if (pool->m_shutdown) { pthread_mutex_unlock (&pool->m_lock); pool->threadExit (); } Task task = pool->m_taskQ->takeTask (); pool->m_busyNum++; pthread_mutex_unlock (&pool->m_lock); cout << "thread " << to_string (pthread_self ()) << " start working..." << endl; task.function (task.arg); delete task.arg; task.arg = nullptr ; cout << "thread " << to_string (pthread_self ()) << " end working..." ; pthread_mutex_lock (&pool->m_lock); pool->m_busyNum--; pthread_mutex_unlock (&pool->m_lock); } return nullptr ; } void * ThreadPool::manager (void * arg) { ThreadPool* pool = static_cast <ThreadPool*>(arg); while (!pool->m_shutdown) { sleep (5 ); pthread_mutex_lock (&pool->m_lock); int queueSize = pool->m_taskQ->taskNumber (); int liveNum = pool->m_aliveNum; int busyNum = pool->m_busyNum; pthread_mutex_unlock (&pool->m_lock); const int NUMBER = 2 ; if (queueSize > liveNum && liveNum < pool->m_maxNum) { pthread_mutex_lock (&pool->m_lock); int num = 0 ; for (int i = 0 ; i < pool->m_maxNum && num < NUMBER && pool->m_aliveNum < pool->m_maxNum; ++i) { if (pool->m_threadIDs[i] == 0 ) { pthread_create (&pool->m_threadIDs[i], NULL , worker, pool); num++; pool->m_aliveNum++; } } pthread_mutex_unlock (&pool->m_lock); } if (busyNum * 2 < liveNum && liveNum > pool->m_minNum) { pthread_mutex_lock (&pool->m_lock); pool->m_exitNum = NUMBER; pthread_mutex_unlock (&pool->m_lock); for (int i = 0 ; i < NUMBER; ++i) { pthread_cond_signal (&pool->m_notEmpty); } } } return nullptr ; } void ThreadPool::threadExit () { pthread_t tid = pthread_self (); for (int i = 0 ; i < m_maxNum; ++i) { if (m_threadIDs[i] == tid) { cout << "threadExit() function: thread " << to_string (pthread_self ()) << " exiting..." << endl; m_threadIDs[i] = 0 ; break ; } } pthread_exit (NULL ); }